

CH2 Atoms, Molecules, and Ions

A worker in Thailand piles up salt crystals..

CH2 Atoms, Molecules, and Ions

Contents

- 2.1 The Early History of Chemistry
- 2.2 Fundamental Chemical Laws
- 2.3 Dalton's Atomic Theory
- 2.4 Early Experiments to Characterize the Atom
- 2.5 The Modern View of Atomic Structure: An Introduction
- 2.6 Molecules and lons
- 2.7 An Introduction to the Periodic Table
- 2.8 Naming Simple Compounds

2.6 Molecules and Ions

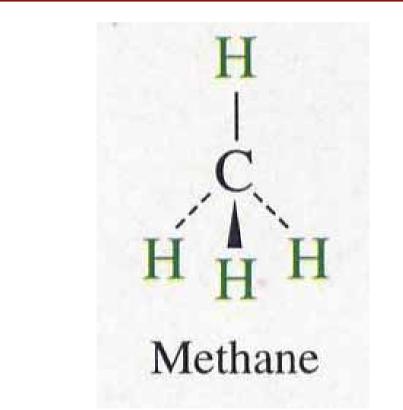
The forces that hold atoms together in compounds are called chemical bonds. One way that atoms can form bonds is by sharing electrons.

These bonds are called covalent bonds, and the resulting collection of atoms is called a molecule.

Molecules can be represented in several different ways. The simplest method is the chemical formula, in which the symbols for the elements are used to indicate the types of atoms present and subscripts are used to indicate the relative numbers of atoms.

More information bout a molecule is given by its
structural formula, in which the individual bonds are shown (indicated by lines).

Structural formulas may or may not indicate the actual shape of the molecule.

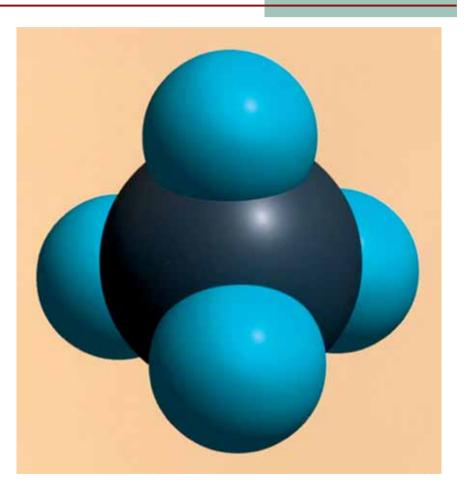


Note that atoms connected to the central atom by dashed lines are behind the plane of the paper, and atoms connected to the central atom by wedges are in front of the plane of the paper.
A molecule of methane gas can be represented in several ways. The structural formula for methane (CH₄)

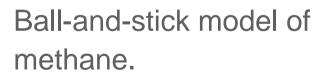
is shown if Fig. 2.16.

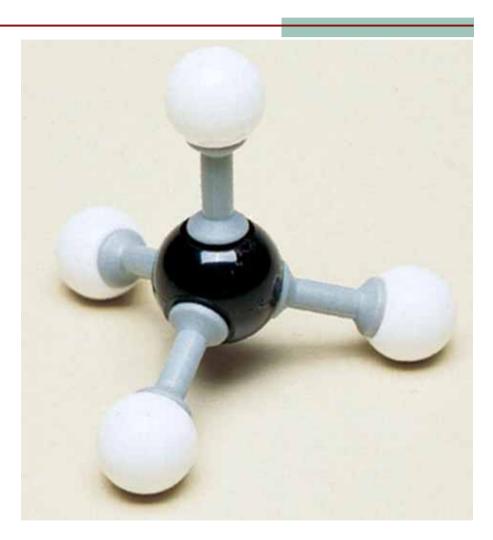
The structural formula for methane.

CH2 Atoms, Molecules, and Ions


The space-filling model of methane, which shows the relative sizes of the atoms as well as their relative orientation in the molecule, is given in Fig. 2.17.
Ball-and-stick models are also used to represent molecules. The ball-and-stick structure of methane is shown in Fig. 2.18.

A second type of chemical bond results from attractions among ions. An ion is an atom or group of atoms that has a net positive or negative charge.


Figure 2.17


Space-filling model of methane. This type of model shows both the relative sizes of the atoms in the molecule and their spatial relationships.

CH2 Atoms, Molecules, and Ions

An electron is transferred from a sodium atom to a chlorine atom.

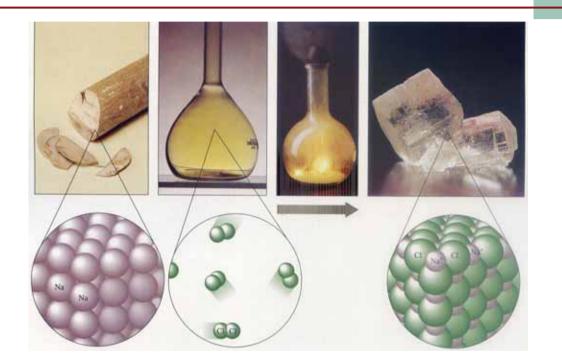
With one electron stripped off, the sodium, with its 11 protons and only 10 electrons, now has a net 1 +

- charge—it has become a *positive ion*.
- * A positive ion is called a **cation**.
- The sodium ion is written as Na⁺, and the process can be represented in shorthand form as

 $Na \longrightarrow Na^+ + e^-$

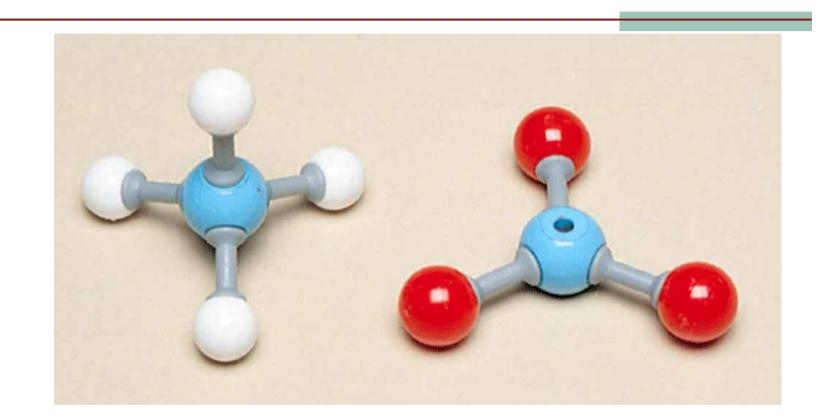
the 18 electrons produce a net 1 - charge; the chlorine has become an ion with a negative charge—an anion. The chloride ion is written as Cl⁻, and the process is represented as

$Cl + e^{-} \longrightarrow Cl^{-}$


Because anions and cations have opposite charges, they attract each other. This force of attraction between oppositely charged ions is called **ionic bonding**.

As illustrated in Fig. 2.19, sodium metal and chlorine gas (a green gas composed of Cl₂ molecules) react to form solid sodium chloride, which contains many Na⁺ and Cl⁻ ions packed together and forms the beautiful colorless cubic crystals shown in Fig. 2.19.
A solid consisting of oppositely charged ions is called an **ionic solid**, or a **salt**.

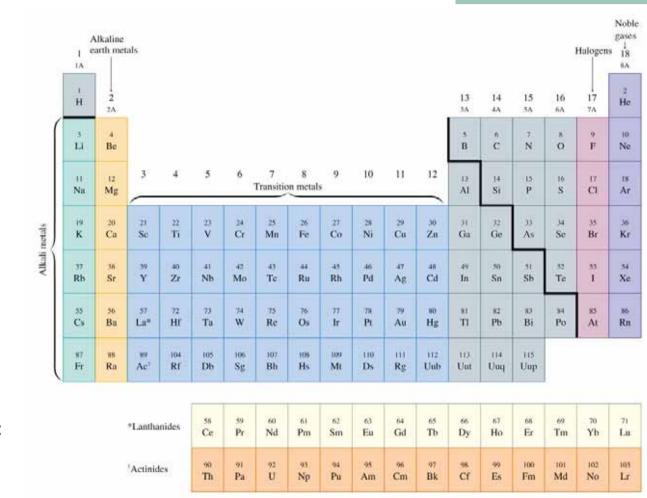
Sodium metal (which is so soft it can be cut with a knife and which consists of individual sodium atoms) reacts with chlorine gas (which contains Cl_2 molecules) to form solid sodium chloride (which contains Na⁺ and Cl⁻ ions packed together).


A solid consisting of oppositely charged ions is called an **ionic solid**, or a **salt**.

* Ionic solids can consist of simple ions, as in sodium chloride, or of polyatomic (many atom) ions, as in ammonium nitrate (NH_4NO_3), which contains ammonium ions (NH_4^+) and nitrate ions (NO_3^-).

The ball-and-stick models of these ions are shown in Fig 2.20.

Ball-and-stick models of the ammonium ion (NH_4^+) and the nitrate ion (NO_3^-) .


CH2 Atoms, Molecules, and Ions

2.7 An Introduction to the Periodic Table

- A simplified version of the periodic table is shown in Fig. 2.21.
- The letters in the boxes are the symbols for the elements; these abbreviations are based on the current element names or the original names (see Table 2.2).
 The number shown above each symbol is the atomic number (number of protons) for that element.
 Most of the elements are metals.

The periodic table.

CH2 Atoms, Molecules, and Ions

TABLE 2.2 The Symbols for the ElementsThat Are Based on the Original Names

Current Name	Original Name	Symbol
Antimony	Stibium	Sb
Copper	Cuprum	Cu
Iron	Ferrum	Fe
Lead	Plumbum	Pb
Mercury	Hydrargyrum	Hg
Potassium	Kalium	K
Silver	Argentum	Ag
Sodium	Natrium	Na
Tin	Stannum	Sn
Tungsten	Wolfram	W

The relatively few nonmetals appear in the upper-right corner of the table (to the right of the heavy line in Fig. 2.21), except hydrogen, a nonmetal that resides in the upper-lift corner.

The periodic table is arranged so that elements in the same vertical columns (called groups of families) have similar chemical properties.

Alkali metals, members of Group 1 A-p-lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).

alkaline earth metals : the members of Group 2A—
beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).

Note from Fig. 2.21 that alternate sets of symbols are used to denote the groups.

The horizontal rows of elements in the periodic table are called **periods**.

Horizontal row 1 is called the first period (it contains H and He); row 2 is called the *second period* (elements Li through Ne); and so on.

2.8 Naming Simple Compounds

When chemistry was an infant science, there was no system for naming compounds.
We will begin with the systems for naming inorganic binary compounds — compounds composed of two

elements—which we classify into various types for easier recognition.

@ Binary Ionic Compounds (Type 1)

Binary ionic compounds contain a positive ion (cation) always written first in the formula and a negative ion (anion).

 The cation is always named first and the anion second.
 A monatomic (meaning "one-atom") cation takes its name from the name of the element. For example, Na⁺ is called sodium in the names of compounds containing this ion.

3. A monatomic anion is named by taking the root of the element name and adding -ide. Thus the Cl⁻ ion is called chloride. (element name chlorine)

• Some common monatomic cations and anions and their names are given in Table 2.3.

TABLE 2.3 Common Monatomic Cations and Anions

Cation	Name	Anion	Name
H^+	Hydrogen	H^-	Hydride
Li ⁺	Lithium	F^{-}	Fluoride
Na ⁺	Sodium	Cl^{-}	Chloride
\mathbf{K}^+	Potassium	Br^-	Bromide
Cs^+	Cesium	Ι-	Iodide
Be^{2+}	Beryllium	O^{2-}	Oxide
Mg^{2+} Ca^{2+}	Magnesium	S^{2-}	Sulfide
Ca^{2+}	Calcium	N^{3-}	Nitride
Ba^{2+}	Barium	P ³⁻	Phosphide
Al^{3+}	Aluminum		
Ag^+	Silver		

The rules for naming binary ionic compounds are illustrated by the following examples:

Compound	Ions Present	Name
NaC1	Na^+, Cl^-	Sodium chloride
KI	K^+, I^-	Potassium iodide
CaS	Ca^{2+}, S^{2-}	Calcium sulfide
Li ₃ N	Li^{+}, N^{3-}	Lithium nitride
CsBr	Cs^+, Br^-	Cesium bromide
MgO	Mg^{2+}, O^{2-}	Magnesium oxide

Sample Exercise 2.3

Naming Type 1 Binary Compounds

Name each binary compound. **a.** CsF **b.** AlCl3 **c.** LiH

Solution

a. CsF is cesium fluoride.

- b. AlCl₃ is aluminum chloride.
- c. LiH is lithium hydride.

Notice that, in each case, the cation is named first, and then the anion is named.

See Exercises 2.55

@ Formulas from Names

♦ Given the name calcium hydroxide, we can write the formula as $Ca(OH)_2$ because we know hat calcium forms only Ca^{2+} ions and that, since hydroxide is OH^{-} , two of these anions will be required to give a neutral compound.

@ Binary Ionic Compounds (Type

Another system for naming these ionic compounds that is seen in the older literature was used for metals that form only two ions.

* The ion with the higher charge has a name ending in-ic, and the one with the lower charge has a name ending inous.

* In this system, Fe^{3+} is called the ferric ion, and Fe^{2+} is called the ferrous ion.

The names for FeCl₃ and FeCl₂ are then ferric chloride and ferrous chloride, respectively.
Table 2.4 lists the systematic names for many common

type cations.

TABLE 2.4 Common Type II Cations

lon	Systematic Name	
Fe ³⁺	Iron(III)	
Fe ²⁺	Iron(II)	
Cu ²⁺	Copper(II)	
Cu ⁺	Copper(I)	
Co ³⁺	Cobalt(III)	
Co^{2^+}	Cobalt(II)	
Sn ⁴⁺	Tin(IV)	
Sn ²⁺	Tin(II)	
Pb ⁴⁺	Lead(IV)	
Pb^{2+}	Lead(II)	
Hg ²⁺	Mercury(II)	
Hg_{2}^{2+*}	Mercury(I)	
Ag^+	Silver†	
Zn^{2+}	Zinc†	
Cd^{2+}	Cadmium [†]	

*Note that mercury(I) ions always occur bound together to form Hg₂²⁺ ions. †Although these are transition metals, they form only one type of ion, and a Roman numeral is not used.

🕘 歐亞書局

Sample Exercise 2.4

Formulas from Names for Type 1 Binary Compounds

Given the following systematic names, write the formula for each compound:

- **a.** potassium iodide
- **b.** calcium oxide
- **c.** gallium bromide

Solution

Name	Formula	Comments
a. potassium iodideb. calcium oxidec. gallium bromide	KI CaO GaBr ₃	Contains K ⁺ and I ⁻ . Contains Ca ²⁺ and O ²⁻ . Contains Ga ³⁺ and Br ⁻ . Must have 3Br ⁻ to balance charge of Ga ³⁺ .

See Exercises 2.55

Naming TypeBinaryCompounds

1. Give he systematic name for each of the following compounds:

a. CuCl **b.** HgO **c.** Fe_2O_3

- 2. Given the following systematic names, write the formula for each compund:
 - a. Manganese() oxide
 - **b.** Lead()chloride

Sample Exercise 2.5

Solution

1.			
Formula	Name		Comments
a. CuCl	Copper(I) cl	nloride	Because the anion is Cl ⁻ , the cation must be Cu ⁺ (for charge balance), which requires a Roman numeral I.
b. HgO	Mercury(II) oxide		Because the anion is O ^{2–} , the cation must be Hg ² [mercury(II)].
c. Fe ₂ O ₃	Iron(III) oxi	de	The three O^{2-} ions carry a total charge of 6-, so two Fe ³⁺ ions [iron(III)] are needed to give a 6+ charge.
2.			
Name		Formula	Comments
a. Mangano	ese(IV) oxide	MnO ₂	Two O^{2-} ions (total charge 4–) are required by the Mn ⁴⁺ ion [manganese(IV)].
b. Lead(II)	chloride	PbCl ₂	Two Cl ⁻ ions are required by the Pb ²⁺ ion [lead(II)] for charge balance.

See Exercises 2.56

Note that the use of a Roman numeral in a systematic name is required only in cases where more than one ionic compound forms between a given pair of elements.
This case most commonly occurs for compounds containing transition metals, which often form more than one cation.

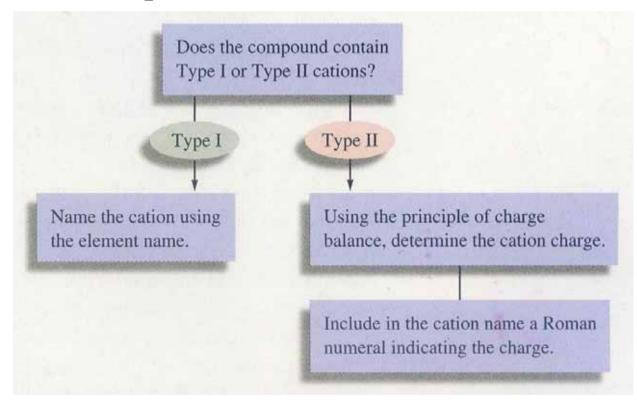
The Elements that form only one cation do not need to be identified by a Roman numeral.

Common metals that do not require Roman numerals are the Group 1A elements, which form only 1 + ions;
the Group 2A elements, which form only 2 + ions: and aluminum, which forms only Al³⁺.

Sample Exercise 2.6 Naming binary Compounds

- 1. Give the systematic name for each of the following compounds:
 - **a.** $CoBr_2$ **b.** $CaCl_2$ **c.** Al_2O_3
- 2. Given the following systematic names, write the formula for each compound:
 - a. Chromium() chloride
 - **b.** Gallium iodide

Solution

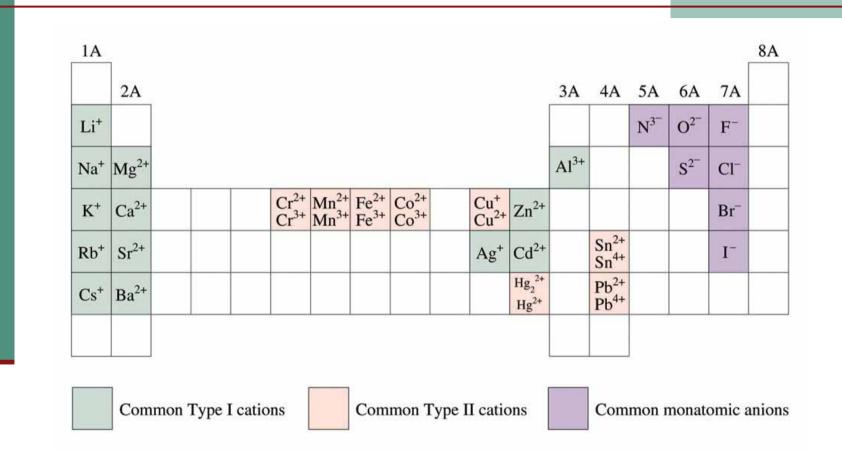

1.

Formula	Name		Comments	
a. CoBr ₂	Cobalt(II) bromide Calcium chloride Aluminum oxide		Cobalt is a transition metal; the compound name must have a Roman numeral. The two Br ⁻ ions must be balanced by a Co ²⁺ ion.	
b. CaCl ₂			Calcium, an alkaline earth metal, forms only the Ca ²⁺ ion. A Roman numeral is not necessary. Aluminum forms only the Al ³⁺ ion. A Roman numeral is not necessary.	
c. Al_2O_3				
2.				
Name		Formula	Comments	
a. Chromiu	m(III) chloride	CrCl ₃	Chromium(III) indicates that Cr ³⁺ is present, so 3 Cl ⁻ ions are needed for charge balance.	
b. Gallium i	iodide	GaI ₃	Gallium always forms 3+ ions, so 3 I ⁻ ions are required for charge balance.	

See Exercises 2.57 and 2.58

The following flowchart is useful when you are naming binary ionic compounds:

The common Type I and Type II ions are summarized in Fig. 2.22.
Also shown in Fig. 2.22 are the common monatomic ions.



Various chromium compounds dissolved in water. From left to right: $CrCl_2$, $K_2Cr_2O_7$, $Cr(NO_3)_3$, $CrCl_3$, K_2CrO_4 .

CH2 Atoms, Molecules, and Ions

The common cations and anions.

@ Ionic Compounds with Polyatomic Ions

The most important polyatomic ions and their names are listed in Table 2.5.

Note in Table 2.5 that several series of anions contain an atom of a given element and different numbers of oxygen atoms.

These anions are called oxyanions.

TABLE 2.5 Common Polyatomic Ions

lon	Name	lon	Name
Hg_{2}^{2+}	Mercury(I)	NCS ⁻	Thiocyanate
NH_4^+	Ammonium	CO_{3}^{2-}	Carbonate
NO_2^-	Nitrite	HCO ₃ ⁻	Hydrogen carbonate
NO_3^-	Nitrate		(bicarbonate is a widely
SO_{3}^{2-}	Sulfite		used common name)
SO_4^{2-}	Sulfate	ClO ⁻	Hypochlorite
HSO_4^-	Hydrogen sulfate	ClO_2^-	Chlorite
	(bisulfate is a widely	ClO ₃ ⁻	Chlorate
	used common name)	ClO_4^-	Perchlorate
OH^-	Hydroxide	$C_2H_3O_2^-$	Acetate
CN^{-}	Cyanide	MnO_4^-	Permanganate
PO_{4}^{3-}	Phosphate	$Cr_2O_7^{2-}$	Dichromate
HPO_4^{2-}	Hydrogen phosphate	CrO_4^{2-}	Chromate
$H_2PO_4^-$	Dihydrogen phosphate	O_2^{2-}	Peroxide
		$C_2 O_4^{2-}$	Oxalate

Naming Compounds containing Polyatomic Ions

d. Sodium selenate

- 1. Give the systematic name for each of the following compounds:
 - a. Na_2SO_4 b. KH_2PO_4 c. $Fe(NO_3)_3$ d. $Mn(OH)_2$ e. Na_2SO_3 f. Na_2CO_3
- 2. Given the following systematic names, write the formula for each compound:
 - **a.** Sodium hydrogen carbonate **b.** Cesium perchlorate
 - **c.** Sodium hypochlorite
 - e. Potassium bromate

Solution

1. Formula	Name	Community
Formula	Name	Comments
a. Na ₂ SO ₄	Sodium sulfate	
b. KH ₂ PO ₄	Potassium dihydrogen phosphate	
c. Fe(NO ₃) ₃	Iron(III) nitrate	Transition metal—name must contain a Roman numeral. The Fe^{3+} ion balances three NO_3^- ions.
d. Mn(OH) ₂	Manganese(II) hydroxide	Transition metal—name must contain a Roman numeral. The Mn ²⁺ ion balances three OH ⁻ ions.
e. Na ₂ SO ₃	Sodium sulfite	
f. Na ₂ CO ₃	Sodium carbonate	

Name	Formula	Comments
a. Sodium hydrogen carbonate	NaHCO ₃	Often called sodium bicarbonate.
b. Cesium perchlorate	CsClO ₄	
c. Sodium hypochlorite	NaOCl	
d. Sodium selenate	Na ₂ SeO ₄	Atoms in the same group, like sulfur and selenium, often form similar ions that are named similarly. Thus SeO_4^{2-} is selenate, like SO_4^{2-} (sulfate).
e. Potassium bromate	KBrO ₃	As above, BrO_3^- is bromate, like ClO_3^- (chlorate).

See Exercises 2.59 and 2.60

@ Binary Covalent Compounds (Type III)

Binary covalent compounds are formed between two nonmetals.

In the naming of binary covalent compounds, the following rules apply:

- 1. The first element in the formula is named first, using the full element name.
- 2. The second element is named as if it were an anion.
- 3. Prefixes are used to denote the numbers of atoms

present. These prefixes are given in Table 2.6.

4. The prefix mono- is never used for naming the first element. For example, CO is called carbon monoxide, not monocarbon monoxide.

TABLE 2.6 Prefixes Used to IndicateNumber in Chemical Names

Prefix	Number Indicated
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

To see how these rules apply, we will now consider the names of the several covalent compounds formed by nitrogen and oxygen:

Compound	Systematic Name	Common Name
N ₂ O	Dinitrogen monoxide	Nitrous oxide
NO	Nitrogen monoxide	Nitric oxide
NO_2	Nitrogen dioxide	
N_2O_3	Dinitrogen trioxide	
N_2O_4	Dinitrogen tetroxide	
N_2O_5	Dinitrogen pentoxide	

Notice from the preceding examples that to avoid awkward pronunciations, we often drop the final o or a of the prefix when the element begins with a vowel.

tetraoxide \rightarrow tetroxide

pentaoxide \rightarrow pentoxide

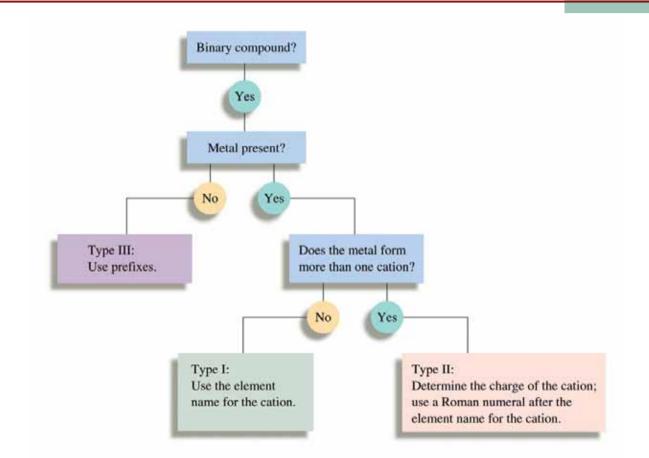
Naming Type III Binary Compounds

- Name each of the following compounds:
 a. PCl₅
 b. PCl₃
 - **c.** SO_2
- 2. From the following systematic names, write the formula for each compound:
 - a. Sulfur hexafluoride
 - **b.** Sulfur trioxide
 - **c.** Carbon dioxide

Solution

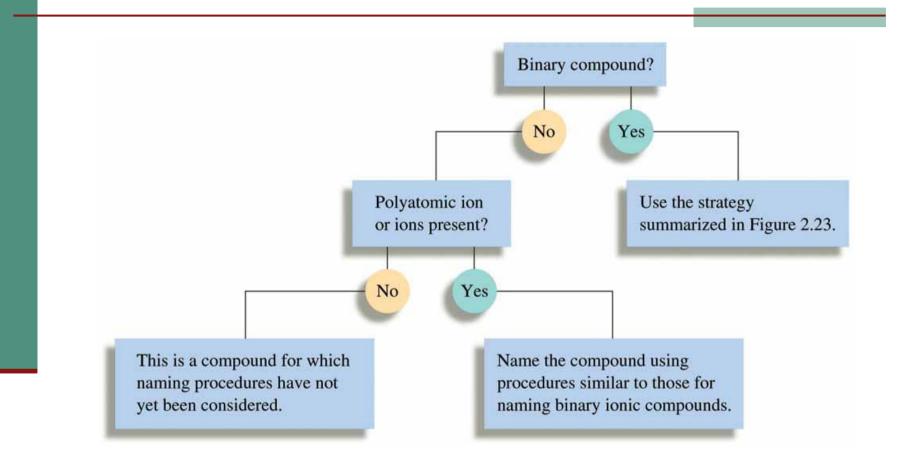
1.		
Formula	Name	
a. PCl ₅	Phosphorus	pentachloride
b. PCl_3	Phosphorus	trichloride
c. SO_2	Sulfur dioxide	
2.		
Name		Formula
a. Sulfur hexafluoride		SF ₆
b. Sulfur trioxide		SO ₃
c. Carbon dioxide		CO

See Exercises 2.61 and 2.62



The rules for naming binary compounds are summarized in Fig. 2.23.
Prefixes to indicate the number of atoms are used only in Type III binary compounds (those containing two nonmetals).

An overall strategy for naming compounds is given in Fig. 2.24.



A flowchart for naming binary compounds.

Overall strategy for naming chemical compounds.

CH2 Atoms, Molecules, and Ions

When dissolved in water, certain molecules produce a solution containing free H⁺ ions (protons).
Theses substances, acids, will be discussed in detail in Chapters 4. 14. and 15. Here we will simple present the rules for naming acids.

When the *anion contains oxygen*, the acidic name is formed from the root name of the anion with a suffix of – ic or –ous, depending on the name of the anion.

1. If the anion name ends in –ate, the suffix –ic is added to the root name. For example, H_2SO_4 contains the sulfate anion ($SO_4^{2^-}$) and is called sulfuric acid: H_3PO_4 contains the phosphate anion ($PO_4^{3^-}$) and is called phosphoric acid: and $HC_2H_3O_2$ contains the acetate ion ($C_2H_3O_2^{-}$) and is called acetic acid.

2. If the anion has an –ite ending, the –ite is replaced by – ous. For example, H_2SO_3 , which contains sulfite (SO_3^{2}) , is named sulfurous acid: and HNO_2 , which contains nitrite (NO_2^{-}) , is named nitrous acid.

The application of these rules can be seen in the names of the acids of the oxyanions of chlorine:

Acid	Anion	Name
HClO ₄	Perchlorate	Perchloric acid
HClO ₃	Chlorate	Chloric acid
HClO ₂	Chlorite	Chlorous acid
HC10	Hypochlorite	Hypochlorous acid

The names of the most important acids are given in Tables 2.7 and 2.8. An overall strategy for naming acids is shown in Fig. 2.25.

TABLE 2.7Names of Acids That DoNot Contain Oxygen

Acid	Name
HF	Hydrofluoric acid
HCl	Hydrochloric acid
HBr	Hydrobromic acid
HI	Hydroiodic acid
HCN	Hydrocyanic acid
H_2S	Hydrosulfuric acid

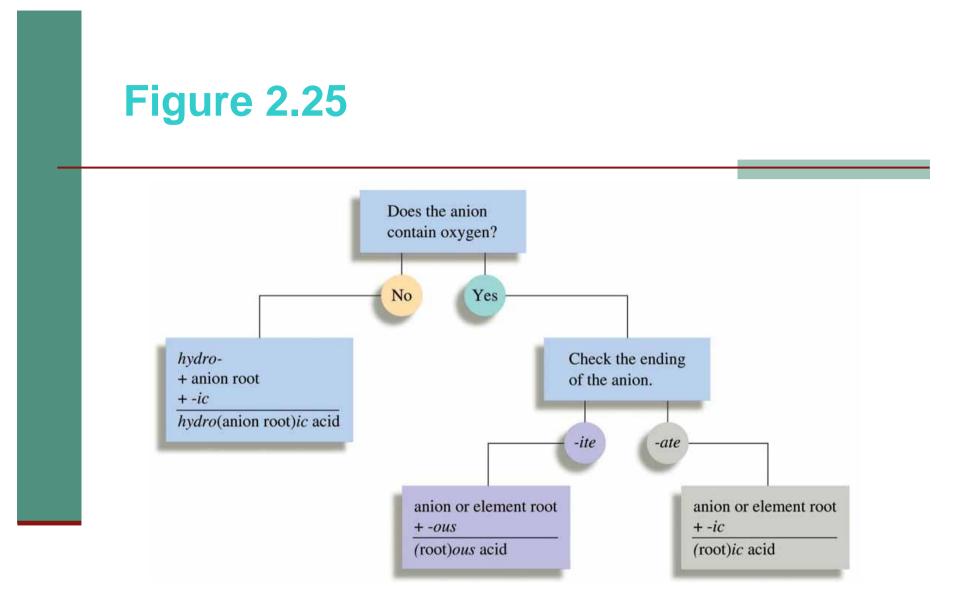

*Note that these acids are aqueous solutions containing these substances.

TABLE 2.8Names of Some Oxygen-Containing Acids

Acid	Name
HNO ₃	Nitric acid
HNO_2	Nitrous acid
H_2SO_4	Sulfuric acid
H_2SO_3	Sulfurous acid
H_3PO_4	Phosphoric acid
$HC_2H_3O_2$	Acetic Acid

A flowchart for naming acids. An acid is best considered as one or more H^+ ions attached to an anion.

