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A difficult blind source separation (BSS) issue dealing with an unknown and dynamic number of sources
is tackled in this study. In the past, the majority of BSS algorithms familiarize themselves with situations
where the numbers of sources are given, because the settings for the dimensions of the algorithm are
dependent on this information. However, such an assumption could not be held in many advanced appli-
cations. Thus, this paper proposes the adaptive neural algorithm (ANA) which designs and associates sev-
eral auto-adjust mechanisms to challenge these advanced BSS problems. The first implementation is the
on-line estimator of source numbers improved from the cross-validation technique. The second is the
adaptive structure neural network that combines feed-forward architecture and the self-organized crite-
rion. The last is the learning rate adjustment in order to enhance efficiency of learning. The validity and
performance of the proposed algorithm are demonstrated by computer simulations, and are compared to
algorithms with state of the art. From the simulation results, these have been confirmed that the pro-
posed ANA performed better separation than others in static BSS cases and is feasible for dynamic BSS

cases.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In general, the goal of blind source separation (BSS) is to distin-
guish source signals from mixed signals received by sensors. The
adjective “blind” emphasizes the fact that, the source signals are
not observed, and, no information is available about the mixing sit-
uation. But, the assumption is often held physically that the source
signals are mutually independent. Recently, BSS in signal process-
ing has received considerable attention from researchers, due to
its numerous promising applications in the areas of biomedical sig-
nal processing, digital communications and speech signal, sonar,
image processing, and monitoring (Cichocki & Unbehauen, 1996;
Schiessl et al., 2000; Tonazzini, Bedini, & Salerno, 2006; Wei,
Woo, & Dlay, 2007; Yilmaz & Rickard, 2004; Zhang & Kassam, 2004).

Since the pioneering work of Herault and Juten (1986), a variety
of algorithms have been proposed for different BSS subjects. In gen-
eral, the existing algorithms can be divided into several major cat-
egories according to criterion: independent component analysis
(Cichocki, Karhunen, Kasprzak, & Vigario, 1999; Cichocki &
Unbehauen, 1996; Herault & Juten, 1986; Liu, Sun, Lin, & Chou,
2006; Schiessl et al., 2000; Tonazzini et al., 2006; Wei et al., 2007;
Ye, Zhu, & Zhang, 2004; Yilmaz & Rickard, 2004; Zhang & Kassam,
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2004), density model-based algorithms (Amari, Chen, & Cichocki,
1997; Comon, 1994; Lee, Girolami, & Sejnowski, 1999; Vigliano &
Uncini, 2003), algebraic algorithms (Belouchrani, Abed-Meraim,
Cardoso, & Moulines, 1997; Even & Moisan, 2005; Li & Wang,
2002; Lou & Zhang, 2003), information-theoretic algorithms (Paj-
unen, 1998; Pham, 2002; Pham & Vrins, 2005) and time-frequency
(or sparseness) based algorithms (Araki, Sawada, Mukai, & Makino,
2007; Lee, Lewicki, Girolami, & Sejnowski, 1999; Liu, Sun, Li, Hsieh,
& Tsai, 2007; Lv & Zhang, 2006; Yilmaz & Rickard, 2004).

A common assumption, the numbers of sources are known a
priori, has been applied by most of BSS algorithms in the past.
However, this assumption could not be ensured in some advanced
applications. The mechanics identifying the number of sources was
developed upon time-frequency based algorithms, such as the one
discussed in Liu et al. (2007). However, the method could not per-
form an instant identification because of its inherent shorts from
huge computation. Neural network (NN) based algorithms are of-
ten utilized in operations of on-line separation, because of its abil-
ity to produce output signals almost instantly with its simple
operations of gradient iteration. For taking into account the non-
stationary environment, an adaptive algorithm is necessary when
dealing with BSS problems with dynamic source numbers.

In the aspect of NN based algorithm, in order to have an exploit-
able dimension of neural network, the numbers of sources n is as-
sumed a priori. Typically it should be equal to the number of
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sensors and outputs m, termed the determined state. In this state,
the natural gradient descent is derived and the property of stability
has been theoretically demonstrated by Cichocki & Amari (2003).
Under-determined neural algorithms, those that have fewer sen-
sors than sources (m <n), have been proposed in Li and Wang
(2002), Cao and Liu (1996). But when there is insufficient prior
information related the mixing matrix or source, the source signals
cannot be successfully recovered. The over-determined neural
algorithm has more sensors than sources, i.e. m > n. Learning diver-
gence arises from the high correlations of similar or redundant sig-
nals from the extra sensors. To overcome the problem, several
neural network architectures, together with the associated learn-
ing algorithms, were proposed in Cichocki et al. (1999). However,
when a pre-whitening layer is applied during estimating the
source number to reduce the dimension of the data vectors, sepa-
ration results may be poor for ill-conditioned mixing matrices or
weak source signals. Similar disadvantages exist if possible data
compression takes place in the separation layer instead of the
pre-whitening layer. A modified natural gradient algorithm using
the adaptive scheme of self-normalized matrix has been suggested
recently by Ye et al. (2004). Unfortunately, its separating perfor-
mance is often incommensurate since the adjusting speed of its
self-normalized matrix cannot always be applied to every case.

Supervised learning algorithms suffer from a large degree of
system complexity because any arbitrary system has to be learned.
A large amount of information is required as input to fine tune the
system in order to avoid under or overestimation. This kind of prior
knowledge is not always available; this restricts the successful
application of fixed structure systems. In order to find the optimal
system, a NN with self-organized structure was proposed (Tenorio
& Manoel, 1990).

The concept behind the proposed method is a system capable of
instantly identifying the number of sources, and adjusts the size of
NN accordingly to ensure optimal performance during separation.
In 2006 we proposed a self-organized neural algorithm to solve the
problem (Liu et al., 2006). According to its properties, the gradient
descent value will increase to infinity while m > n, the rule of self-
organization will allow the dimension of network to grow gradu-
ally at a fixed period, until infinity occurs, and then trim the
dimensions one by one until the gradient value steadies again.
However, there is no best value when defining a growth period,
for example, the algorithm will take a long time to become over-
determined when a large value is given; otherwise, it will spend
too much time trimming the redundant dimensions when a small
value is given. Though the ability of this algorithm to handle a sta-
tic BSS problem is verified, it could not solve a problem with dy-
namic source numbers.

In this paper, the focus is on advanced BSS problems which in-
volve unknown and dynamic number of sources. Considering the
researchers’ previous experiences in BSS study, an adaptive neural
algorithm (ANA) is further proposed. This algorithm is based on the
feed-forward NN proposed by Cichocki & Unbehauen (1996), and
utilizes an improved cross-validation technique to instantly esti-
mate the number of sources. The size of the NN will be updated
accordingly in respect to the estimation. In order to allow greater
efficiency when learning in the dynamic NN structure, an adaptive
learning rate for the NN by reference to gradient information was
proposed. The validity and efficiency of the proposed ANA is dem-
onstrated by several BSS simulations. Ye’s algorithm (Ye et al,,
2004) is implemented to perform comparisons on the separation
performance. Note that the method proposed in Cichocki et al.
(1999) is not able to tackle dynamic BSS problem because its
source number estimation - which requires calculation of a large
number of mixed signals - cannot be performed instantaneously.
This method is not implemented in this paper because it is not
appropriate for the function in these simulations.

The remainder of this paper is organized as follows: Section 2
presents the BSS problem formulation, the estimator of source
numbers, and the cross-validation technique. Section 3 presents
the on-line estimator, the self-organized criterion, and the adjust-
ment of learning rate. The separation performances of the ANA and
an existing algorithm are contrasted in several computer simula-
tions, shown in Section 4. Section 5 contains a brief conclusion.

2. Problem formulation
2.1. The description of general BSS

In a situation where the sources are unobservable,
s(t) =[s1(t),...,sa(t)]" is the zero-mean vector and is mutually (spa-
tially) statistically independent (or as independent as possible),
where n denotes the number of sources and t=1,...,N is the in-
stant time of sampling. The available sensor vector
X(£) = [x1(0),. .., xm(0)]", where m is the number of sensors, is given
by

X(t) = As(t) (1)

where A € R™" is a non-singular and unobservable matrix has non-
zero determinant. The assumption m=n is held for convenience
when explaining. The goal of BSS is to recover the waveforms of
each source from individual output y(t) such that

y(t) = DPs(t) = Ps(t) )

where D € R™" is a diagonal scaling matrix with non-zero entries
and P € R™" is any permutation matrix and P is the generalized
permutation matrix with exactly one non-zero element in each
row and each column (Cichocki et al., 1999). Typically, the mapping
elements W(t) of a NN, called separating matrix is regarded as an
inverse of A. Then, the separated signals are obtained through the
following:

y(t) = W()x(t) 3)

Generally, weights of NN are updated by the gradient decent,
and the objective function is a nonlinear correlation criterion
which is derived from independent component analysis (ICA) Cao
& Liu, 1996. Since source signals are zero-mean and mutually inde-
pendent, the generalized covariance matrix is represented as

Re; = E{f(y)g' (v)} — E{f(y)}E{g"(¥)} 4)

where f(y;) and g(y;) are different odd nonlinear activation func-
tions. The diagonal elements of R¢g are non-zero and all other terms
are zero. The terms E{f(y;)}E{g"(y;)} will be zero if the probability
density functions (pdf) of each source are even. The choice of acti-
vation functions, f{y;) and g(y;), is based on the statistically distribu-
tion characteristic of source signals, refer to literature (Cao & Liu,
1996) for further detail.

The first updating equation is proposed by Herault & Juten
(1986), as the following:

wii(t) = wy(t — 1) + p - Awy(t) (5)
and
Aw;(t) = f(yi(1)g (1)) (6)

where {w;} are elements of the separating matrix W, and p denotes
a learning rate, a lower value is usually given. According to (6),
Amari utilized feed-forward NN and proposed the robust updating
equation for ill-condition cases, as the following:

Aw;(t) = [45 — F (i) (6))Iwi (£) )

where 4 = {4;} denotes the self-normalized matrix (typically 4 =1I).
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2.2. Estimation of the number of sources

The cross-validation techniques have been primarily applied in
multivariate statistics (Krzanowski, 1987). The basic idea of a
cross-validation method is that it divides the data into several sub-
groups. One group is used to determine some features of the data,
and the other groups are used to verify the features. Using this
technique, a criterion for estimating the number of sources based
on the error of estimated noise variance was proposed by Cao,
Murate, Amari, Cichocki, & Takeda (2003).

Let C denote the covariance matrix given by C = xx". The estima-
tion can be obtained as

¥ = diag(C — AA") (8)

where A = UﬁA;/z, and A; is a diagonal matrix whose elements are
the n largest eigenvalues of C. The columns of U; are the corre-
sponding eigenvectors. The data matrix x € R™ * M is then divided
into several disjoint groups, such as x; € R™ * VK where the group
number i=1,...,K. There will be a larger error between the noise
variance diag(¥;) and its estimated diag(¥,,), where i # m, making
it obvious when the estimation of the source number 1 has not been
matched to its true value. Based on this property, the criterion for
each conjectured source number ft was defined as

K A a
Error(n) = % S tridiag(¥(") - diag( ¥’ )
i=1

It is necessary to compute all the possible estimates of the source
number, the boundary of 1 <f < (1/2)2m+1 - +v/8m+ 1) is sug-
gested in Cao et al. (2003).

There are other available methods for approximating the num-
bers of sources, such as principal component analysis (PCA) or sin-
gular value decomposition (SVD). According to our experiences, the
error ratio for the estimations and the cost of computation are
slightly less evident with cross-validation than PCA or SVD. Conse-
quently, it is the reason why this study bases its system on cross-
validation to develop an instant estimator.

3. The adaptive neural BSS algorithm

The relationship between the unobservable outside situation
and our algorithm is illustrated as Fig. 1. The source number estima-
tor informs the adaptive structure NN what size of structure is best.
The learning rate adjustment evaluates a proper value according to
gradient, and returns it to the updating function of the learning cri-
terion. In this study, ambient noises from the environment are con-
sidered, but the subtle noises from transmission are ignored.

3.1. Improvement of cross-validation

isfy the requirements of on-line learning, this paper used the recur-
sive method to calculate the mean and the covariance matrix. In
the beginning, a sampling window length wd is defined. While
the number of sampling mixtures is less than wd (i.e. t < wd),
the covariance matrix is recursively calculated as following (Lou
& Zhang, 2003):

M(t) %M(t _1) +%x(t) (10)
AX(t) = M(t) — M(t — 1) (11)
Ct) # (C(t— 1) + AX(E)AX(D)T]

£ LIAX() ~ M(JIAX(E) — M(o)]" (12)

where M is the mean of x. While t>wd, past wd mixtures,
X = {x(t — (wd +1)),...,x(t)}, used to generate the mean and the
covariance matrix, therefore, early mixtures will not affect present
estimation when the number of sources has changed.

At each iteration, the instant noise variance ¥ is obtained
from (8), where 1 = 1,...,m. Then, at the tth instant the estimated
number of source can be obtained by

n(t) = min{arg minJ(n)} (13)
where
Jy =[P — pmp (14)

where ¥ is the last of instant noise variances.
3.2. Self-organized criterion

In the field of neural network research, how to define a proper
structure size is an important issue. NN’s with a small structure
size cannot perform complex mappings. A large sized NN has not
only a high running cost but also unstable performance. The size
of the structure is usually defined by trial and error in general
applications; however, a self-organized structure is proposed for
the dynamic problems such as those discussed in Tenorio and
Manoel (1990), Morris and Garvin (1996), Park, Huh, Kim, Seo,
and Park (2005). The method proposed in this study utilizes a fully
connected feed-forward NN which includes an input layer and an
output layer. The two layers contain the same number of nodes,
n. Then, a pair of nodes from both layers will be generated or re-
moved at the time n changes.

The self-organized procedure at each iteration is to evaluate the
values of n(t) at the beginning. When n(t) > n(t — 1), which implies
the number of source signals is increasing, then the size of the sep-
arating matrix will be enlarged by

According to the cross-validation mentioned in the last section,  w;(t) = {W"J’(t —-1), as i< ﬁ(f) and j < n(t), (15)
the unknown number of sources can be calculated in batch. To sat- T otherwise.

____________ -

: Siy ) 1 % il Y,

(R Mixi I x x . Yy

1 _2-—- Mj;lf t 2 Source Number - Adaptive Structure 2

Ll D Estimator Neural Network :

I s, A A X5 Vi

I I

. Unknown Information ]

Learning Rate
Adjustment

Learning
Criterion

Fig. 1. The framework of the proposed adaptive neural algorithm.
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where r is a random value between [-1,1], newly produced ele-
ments are added to the end of the matrix W(t— 1). While
n(t) < a(t—1), which implies the number of source signals is
decreasing, then the size of the separating matrix will be trimmed by

W(t) — {w;(t —1)|i < n(t) and j < n(t)} (16)

The redundant elements of the separating matrix are removed from
the end of the matrix. If n(t) = n(t — 1), then the size of separating
matrix can no longer be tuned, i.e. W(t) = W(t — 1).

3.3. Learning rate adjustment

Since NN's structure size is tuned according to the varying num-
ber of sources, the weights will be retrained repeatedly. The speed
and stability of NN learning are affected by the size of learning rate.
Consequently, an adjustment to evaluate an adaptive learning ratio
between 0 and 1 has been proposed, Since the BSS is unsupervised,
there is no definitive guide. We therefore evaluate the ratio with
gradient information, MDgy and MAgy. MDg, evaluates the average
of variation between two neighbour gradients, as

1 n n
MDai = 75y 2 Z |Aw () — Aw(t 1) (17)
Then, MA,q indicates the instant mean of MDgyq, that is calculated by
t—1 1
MAg(t) :TMAgd(t— 1) +?Mng (18)

The adaptive ratio p4q is further generated as

1

Hag(t) :WG (0,1] (19)

Finally, the separating criterion (7) can be rewritten as the
following:

Aw;i(t) = foq(t) L4 = f(yi(£)8 () Jwy () (20)

Generally, a reduced learning rate could make a suitable train-
ing state for NN. According to this idea, our design further bases
on the practical learning state of NN to derive a rectification of
learning rate. Consequently, it is helpful to enhance efficiency for
the unsupervised BSS problem.

4. Simulations and results

The simulations include two kinds of BSS cases with static and
dynamic number of sources. These cases incorporate six stationary
source signals which are mutually independent and zero-mean:

S — - - o L L L — —
005 01 015 02 025 03 035 04 045 05
Sampling

Fig. 2. The waveform of source signals.

s1(t) = sin(500t + 5 cos(60¢))

Sy(t) = sin(800¢)

s3(t) = sin(450¢) sin(40t) 21)
S4(t) = sin(90¢)

S5(t) = sign(cos(2m155t))

se(t) = Noise with uniformly distributed in [-1, 1]

where s;: phase-modulated signal, s,: high-frequency sinusoidal
signal, s3: amplitude-modulated signal, s4: low-frequency sinusoi-
dal signal, ss: sign signal, se: noise signal (Cichocki and Unbehauen,
1996; Ye et al., 2004). The sample rates are 1 kHz. The waveforms
are displayed in Fig. 2. The mixing matrix A is a full column rank,
and its elements are randomly selected from [0,1].

The cross-talking error proposed by Amari et al. (1997) is uti-
lized to evaluate the separation performance

Plili i ‘Cpfl| -1 +1i i |CPfl| -1
m = \ 4= max|Cp n &= \ 5= Max;|Cy|
(22)

where {cpq} = WA is the combination of the separating and mixing
matrix. A small PI value implies a competent separation.

We implement Ye’s algorithm (Ye et al., 2004) in each simula-
tion to compare with the ANA using three different learning rates
(11 =0.001, up =0.005 and pgq x Uz). The involved parameters of
Ye's algorithm are given by referring to Ye et al. (2004). In ANA,
there are eight sensors (i.e. m = 8), the initial size of structure is
1 (i.e. n(0) = 1), and the length of the cross-validation slide win-
dow is wd = 30. Since all of the sources in (21) are sub-Gaussian
signals, we take on the advice of Cao and Liu (1996), and pick acti-
vation functions for (20):

{f (yi(t)) = sign(y;(t))
g(yi(t)) = tanh(10y;(t))
All simulation results will be presented as average values which are

generated from 50 independent runs of some algorithm for each
simulation.

(23)

4.1. BSS with static number of sources

This simulation includes two cases whose number of sources is
constant. The first is a n =3 case which has the first three source
signals si(t) of (21), where i=1,...,3. Similarly, the second is a
n=>5 case, and the index of source signalsisi=1,...,5.

Presented in Figs. 3 and 6 are the results of both cases after
10,000 iterations, and the curves of estimation of source signals
by the ANA with adaptive learning rates. The waveforms of sepa-

Estimated Number of Sources

i
10 10° 10° 10
Iteration Number

Fig. 3. The curve of estimated number of sources by the ANA with p,, x i, in the
n=3 case.
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rated signals are presented in Figs. 4 and 7 which display the last
500 separated samples. Figs. 5 and 8 present four curves of the
average PI which are obtained by Ye’s algorithm and the ANA with
different learning rates. The average and variance of final PI values
are listed in Table 1 for comparing.

4.2. BSS with dynamic number of sources

This is a dynamic BSS simulation which uses time-variant num-
bers of sources in the following equations:

(1) n=4, 3, 6 Case: the numbers of sources decrease, then will
increase:

4. as IN < 6000
n=y< 3,as 6000 < IN < 12,000 (24)
6,as 12,000 < IN < 18,000

(2) n=3, 6,2 Case: the numbers of sources increase, then will
decrease:

3,as IN < 6000
n=1< 6,as 6000 < IN < 12,000 (25)
2,as 12,000 < IN < 18,000

>
-5‘5 9.55 96 9.65 8.7 9.75 9.8 9.85 9.8 9.95 10
2 T T T T T T T
A
™~ g |
| |
i L L L L L L L L
55 8.55 96 9.65 87 8.75 9.8 9.85 9.8 9.95 10
2 T T T T T T T
o ,
| 1

5 . . , . s , .
85 955 66 065 o7 975 98 985 99 985 10
Sampling

Fig. 4. The waveforms of the separated signals by the ANA with p,, x u, inthen=3
case.

4.5 T T T T T
—+—Ye's algorithm
4 o ANA with -
—+—ANA with p,
3.5 ——ANA with p_ xp, |

Average of Performance Index

.
‘. NG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration Number

Fig. 5. The average performance indexes of Ye's algorithm and the ANA with
different learning rates (50 independent runs of the n =3 case).

where IN denotes the iteration number, and n source signals is the
first n of (21). Both cases have three states of n which switch every
6000 iterations.

After the two simulation cases finish, the number of sources ob-
tained by the ANA with pyg x u, are presented in Figs. 9 and 12, the
waveforms of the last 200 separated signals of each state are pre-
sented in Figs. 10 and 13. Several windows have no results because
those outputs do not exist. The four PI curves obtained from differ-
ent methods are compared in Figs. 11 and 14. The average and var-
iance of the final PI values are further presented in Table 1. It
should be noted that the values of Ye’s algorithm in the table are
all blank because it is always diverging when the number of
sources is increasing.

5. Discussion

From the above simulation results, it can be confirmed at first
that the on-line source number estimator is functional and has a
short identifying time (under 20 iterations which is smaller than
the value of wd). The value of wd is selected by experience. If wd
is not big enough, the estimation of cross-validation cannot cor-
rectly evaluate the source numbers.

About the convergence of the PI average, Ye’s algorithm always
converges at a high value because the self-normalized matrix can-

Estimated Number of Sources

. A
10°
Iteration Number

Fig. 6. The curve of estimated number of sources by the ANA with pu,, x f, in the
n=>5 case.

2
> 0
8
>\N 0
8
PR
2
257 10
4
=0
2 : . : : \ s . s .
5‘5 9.55 9.6 9.65 9.7 9.75 98 9.85 89 9.95 10

Sampling

Fig. 7. The waveforms of the separated signals by the ANA with .4 x i, inthen=5
case.
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not find the perfect value during its evolution. For ANA, the PI
curve decreases monotonously when a small learning rate y, is
used. Inversely, the curve fluctuates during decrease and cannot
steady when a big learning rate u, is used. However, when the
adaptive learning rate pqq x U is used, the PI speedily and stably

converges at a lower value than others.

From Table 1, it can be observed that both algorithms have sim-
ilar performance in variance, but the ANA has a far superior value

on average.

Table 1
Comparison of final performance index.

Case PI ANA with paq x po Ye’s algorithm

n=3 Average 0.0476 0.6322
Variance 0.0014 0.0116

n=5 Average 0.0863 0.8639
Variance 0.0116 0.0119

n=4,3,6 Average 0.1794 None
Variance 0.0202 None

n=3,6,2 Average 0.0175 None
Variance 9.0621e—006 None

@

Average of Performance Index
(23

—+—Ye's algorithm
------ -ANA with [

——ANA with a
—— ANA with

ag™H2

! L 1 n
4000 5000 6000 7000

Iteration Number

L L L
0 1000 2000 3000

8000

9000 10000

Fig. 8. The average performance indexes of Ye’s algorithm and the ANA with

different learning rates (50 independent runs of the n =5 case).

Estimated Number of Sources

6000 8000 10000 12000 14000

Iteration Number

0 2000 4000

16000 18000

Fig. 9. The curve of estimated number of sources by the ANA in the n =4, 3, 6 case.
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5e5 50 58 & T8 1.9 12 s 17.9 18
2 2 2
>
) 585 55 505 6 T8 1.9 12 e 17.9 18
2 2
|
585 50 505 6 T8 11.9 12 fre 17.9 18
2 2
- oV W
w i} o}—‘ 0
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) 2 o
585 59 595 6 18 1.9 12 Fe 17.9 18
2 2 2
3 - O
5 - | .
585 59 595 6 '§1,B 1.9 12 1;7.8 17.9 18
>
585 59 595 6 fis 19 12 e 179 18
Sampling Sampling Sampling

Fig. 10. The waveforms of the separated signals by the ANA with u,, x u, in the
n =4, 3, 6 case (the windows of columns from left to right correspond to all outputs
of neural network in the iteration intervals [5801-6000], [11,801-12,000] and

[17,801-18,000]).

Average of Performance Index

—+—Ye's algorithm
ANA with i,

—+—ANA with p,

——ANA with ¥,

1
0 2000 4000

6000

8000 10000
Iteration Number

12000

14000 16000 18000

Fig. 11. The average performance indexes of Ye’s algorithm and the ANA with
different learning rates (over 50 independent runs of the n=4, 3, 6 case).

Estimated Number of Sources

0 2000

4000

‘ :
6000  BOOO
Iteration Number

. ) L
10000 12000 14000

.
16000 18000

Fig. 12. The curve of estimated number of sources by the ANA in the n = 3, 6, 2 case.
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Fig. 13. The waveforms of the separated signals by the ANA with p,, x t, in the
n =3, 6,2 case (the windows of columns from left to right correspond to all outputs
of neural network in the iteration intervals [5801-6000], [11,801-12,000] and
[17,801-18,000]).
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Fig. 14. The average performance indexes of Ye’s algorithm and the ANA with
different learning rates (over 50 independent runs of the n =3, 6, 2 case).

6. Conclusion

An adaptive neural algorithm to solve BSS problems with un-
known and dynamic source numbers is proposed in this paper.
Estimation of the source numbers are based on a system improved
from cross-validation, and allows fast evaluation and discovery of
the actual value. Next, the self-organized criterion guides the
dimension of NN into the determined state. The learning rate
adjustment further enhances the speed and stability of NN
convergence.

According to the simulation results, the ANA is able to conquer
the supplied BSS problems with a separation performance superior
to that of Ye’s algorithm, what's more, the proposed adaptive
learning rate benefits from fast and stable training of NN when
using fixed learning rates.
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